Inferences on Weibull parameters with conventional type-I censoring

نویسندگان

  • Avijit Joarder
  • Hare Krishna
  • Debasis Kundu
چکیده

In this article we consider the statistical inferences of the unknown parameters of a Weibull distribution when the data are Type-I censored. It is well known that the maximum likelihood estimators do not always exist, and even when they exist, they do not have explicit expressions. We propose a simple fixed point type algorithm to compute the maximum likelihood estimators, when they exist. We also propose approximate maximum likelihood estimators of the unknown parameters, which have explicit forms. We construct the confidence intervals of the unknown parameters using asymptotic distribution and also by using bootstrapping technique. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are also obtained under fairly general priors on the unknown parameters. The Bayes estimates cannot be obtained explicitly. We propose to use Gibbs sampling technique to compute the Bayes estimates and also to construct the highest posterior density credible intervals. Different methods have been compared by Monte Carlo simulations. One real data set has been analyzed for illustrative purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests

A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function.  As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

Some Statistical Inferences on the Parameters of Records Weibull Distribution Using Entropy

 In this paper, we discuss different estimators of the records Weibull distribution parameters and also we apply the Kullback-Leibler divergence of survival function method to estimate record Weibull parameters. Finally, these estimators have been compared using Monte Carlo simulation and suggested good estimators.

متن کامل

Modified Progressive Type-II Censoring Procedure in Life-Testing under the Weibull Model

In this paper we introduce a new scheme of censoring and study it under the Weibull distribution. This scheme is a mixture of progressive Type II censoring and self relocating design which was first introduced by Srivastava [8]. We show the superiority of this censoring scheme (PSRD) relative to the classical schemes with respect to “asymptotic variance”. Comparisons are also made with respect ...

متن کامل

CONSTANT STRESS ACCELERATED LIFE TESTING DESIGNWITH TYPE-II CENSORING SCHEME FOR PARETO DISTRIBUTION USING GEOMETRIC PROCESS

In many of the studies concerning Accelerated life testing (ALT), the log linear function between life and stress which is just a simple re-parameterization of the original parameter of the life distribution is used to obtain the estimates of original parameters but from the statistical point of view, it is preferable to work with the original parameters instead of developing inferences for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2011